Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Onate, Eugenio; Kleiber, Michal (Ed.)This review article highlights state-of-the-art data-driven techniques to discover, encode, surrogate, or emulate constitutive laws that describe the path-independent and path-dependent response of solids. Our objective is to provide an organized taxonomy to a large spectrum of methodologies developed in the past decades and to discuss the benefits and drawbacks of the various techniques for interpreting and forecasting mechanics behavior across different scales. Distinguishing between machine-learning-based and model-free methods, we further categorize approaches based on their interpretability and on their learning process/type of required data, while discussing the key problems of generalization and trustworthiness. We attempt to provide a road map of how these can be reconciled in a data-availability-aware context. We also touch upon relevant aspects such as data sampling techniques, design of experiment, verification, and validation.more » « lessFree, publicly-accessible full text available November 3, 2025
-
De Lorenzis, L; Papadrakakis, M; Zohdi T.I. (Ed.)This paper introduces a neural kernel method to generate machine learning plasticity models for micropolar and micromorphic materials that lack material symmetry and have internal structures. Since these complex materials often require higher-dimensional parametric space to be precisely characterized, we introduce a representation learning step where we first learn a feature vector space isomorphic to a finite-dimensional subspace of the original parametric function space from the augmented labeled data expanded from the narrow band of the yield data. This approach simplifies the data augmentation step and enables us to constitute the high-dimensional yield surface in a feature space spanned by the feature kernels. In the numerical examples, we first verified the implementations with data generated from known models, then tested the capacity of the models to discover feature spaces from meso-scale simulation data generated from representative elementary volume (RVE) of heterogeneous materials with internal structures. The neural kernel plasticity model and other alternative machine learning approaches are compared in a computational homogenization problem for layered geomaterials. The results indicate that the neural kernel feature space may lead to more robust forward predictions against sparse and high-dimensional data.more » « less
-
We introduce a denoising diffusion algorithm to discover microstructures with nonlinear fine-tuned properties. Denoising diffusion probabilistic models are generative models that use diffusion-based dynamics to gradually denoise images and generate realistic synthetic samples. By learning the reverse of a Markov diffusion process, we design an artificial intelligence to efficiently manipulate the topology of microstructures to generate a massive number of prototypes that exhibit constitutive responses sufficiently close to designated nonlinear constitutive behaviors. To identify the subset of microcstructures with sufficiently precise fine-tuned properties, a convolutional neural network surrogate is trained to replace high-fidelity finite element simulations to filter out prototypes outside the admissible range. Results of this study indicate that the denoising diffusion process is capable of creating microstructures of fine-tuned nonlinear material properties within the latent space of the training data. More importantly, this denoising diffusion algorithm can be easily extended to incorporate additional topological and geometric modifications by introducing high-dimensional structures embedded in the latent space. Numerical experiments are conducted on the open-source mechanical MNIST data set (Lejeune, 2020). Consequently, this algorithm is not only capable of performing inverse design of nonlinear effective media, but also learns the nonlinear structure–property map to quantitatively understand the multiscale interplay among the geometry, topology, and their effective macroscopic properties.more » « less
-
Experimental data are often costly to obtain, which makes it difficult to calibrate complex models. For many models an experimental design that produces the best calibration given a limited experimental budget is not obvious. This paper introduces a deep reinforcement learning (RL) algorithm for design of experiments that maximizes the information gain measured by Kullback–Leibler divergence obtained via the Kalman filter (KF). This combination enables experimental design for rapid online experiments where manual trial-and-error is not feasible in the high-dimensional parametric design space. We formulate possible configurations of experiments as a decision tree and a Markov decision process, where a finite choice of actions is available at each incremental step. Once an action is taken, a variety of measurements are used to update the state of the experiment. This new data leads to a Bayesian update of the parameters by the KF, which is used to enhance the state representation. In contrast to the Nash–Sutcliffe efficiency index, which requires additional sampling to test hypotheses for forward predictions, the KF can lower the cost of experiments by directly estimating the values of new data acquired through additional actions. In this work our applications focus on mechanical testing of materials. Numerical experiments with complex, history-dependent models are used to verify the implementation and benchmark the performance of the RL-designed experiments.more » « less
-
null (Ed.)Conventionally, neural network constitutive laws for path-dependent elasto-plastic solids are trained via supervised learning performed on recurrent neural network, with the time history of strain as input and the stress as input. However, training neural network to replicate path-dependent constitutive responses require significant more amount of data due to the path dependence. This demand on diverse and abundance of accurate data, as well as the lack of interpretability to guide the data generation process, could become major roadblocks for engineering applications. In this work, we attempt to simplify these training processes and improve the interpretability of the trained models by breaking down the training of material models into multiple supervised machine learning programs for elasticity, initial yielding and hardening laws that can be conducted sequentially. To predict pressure-sensitivity and rate dependence of the plastic responses, we reformulate the Hamliton-Jacobi equation such that the yield function is parametrized in the product space spanned by the principle stress, the accumulated plastic strain and time. To test the versatility of the neural network meta-modeling framework, we conduct multiple numerical experiments where neural networks are trained and validated against (1) data generated from known benchmark models, (2) data obtained from physical experiments and (3) data inferred from homogenizing sub-scale direct numerical simulations of microstructures. The neural network model is also incorporated into an offline FFT-FEM model to improve the efficiency of the multiscale calculations.more » « less
An official website of the United States government
